How to assemble the supt $\quad G M C-4$

4-bit Micro Computer

Assembly time: Approximately 15 minutes
(The electric circuit conespreasem (The electric circuit comes preassembled on the
circuit board, so there is no need for soldering.)

[3] Screw the circuit board onto the main unit Being careful not to let the lead wires get caught between the circuit board and the main unit, affix the circuit board to the main unit with screws.

Pass the black and red
rows on the main unit.

[4] Attach the key sheet to the circuit board

1. Remove the white paper on
one side of the double-sided label, and place label over th
back side of the key sheet so that the four corners line up.

Key sheet (Backs side
Non-printed side)

2. Remove the white paper on the other side of the double-sided label, and attach the key sheee to the circuit board by lining it up with the L-shaped

[5] Insert the batteries and turn on the switch

1. Insert batteries onto the battery box in the main unit and turn on the switch. Confrm that "F" is displayed on the numeric LED display.

2. Confirm that a short beep sounds when a key is pressed and the number or letter of the key pressed is displayed on the numeric LED display.

Instructions on how to
use the supplement
start from the following
start from the following page.
*Be careful not totouch any of
the electronic carts on the
 circuit bordd directiy with your
hand. Doins somac cuse
operation to becom e ustable operation to obecome unstable
Assorne soldermy
out. Thereforfere therere is is risiso of

out. The injury.

Nothing is displayed on the numeric LED
Q: Nothing is displayed on the nu.
display. No sound is produced.
(2)

Check the assembly condition.
Ensure that the connector for the battery box is fully engaged with the pen on the circuit board.
that the connector has been inserted in the right direction.
Ensure that you are using new batteries
Replace any batteries that have run out of power. Be sure to check the
Nhentation of the batteries. Whenever the unit is not in

Check the speaker wires.
If either of the wires has be
feither of the wires has become detached from the speaker, rectify the
situation by resoldering
Check the switch.
Ensure that the switch is turned to 0 N.
If it it, carefully realign it.

GMC－4 Manual

1
Part Names

Operation Test

Test the GMC－4 to see if it is operating properly．
First，turn the＂main switch＂on the
First，turn the＂main switch＂on the backside of the main unit to ON ． After the power is turned on，the numeric LED display turns on．

Key input test

The 4×4 number of keys on which $\boldsymbol{0}$ to and \boldsymbol{A} to \boldsymbol{F} are written are＂Numeric keys．＂Try pressing each numeric key，one at a time，in orde When you press a numeric key，the letter or number for that key will be isplayed on the＂Numeric letters are displayed for B（b）and（0）（d）only．
＜Speaker test 》
A short beep sound will be emitted from the speaker in conjunction with ey input．At the same time，the center binary LED（fourth LED from the ight）will also flash for a brief momen．

2
Operation Test

《Binary LED test》

The binary LEDs are used to display＂binary numbers．＂Numbers are given for binary LEDs 0 through 6 ，and these numbers are referred to as bit numbers．If an LED is lit up，then that LED is displaying a＂ 1 ，＂and if an LED
is off，then that LED is displaying a 0 ．＂ is off，then that LED is displaying a
eepeatedly pressing the $\mathbb{K C R}$ key changes the binary LED display in the order given below．

Binary LED display and correspondence with hexadecimal and decimal numbers

Binary LED display $(-=O F F / O=O N)$	Binaryumbers	$\begin{aligned} & \text { Hexadecimal } \\ & \text { numbers } \end{aligned}$	Decimal numbers
－－－－－－－	0000000	00	0
－－－－－	0000001	01	1
－－－－－－	0000010	02	2
－－－－○	0000011	03	3
－－－－－－	0000100	04	4
－－－－－	0000101	05	5
－－－－○	0000110	06	6
－－－○○○	0000111	07	7
－－－－－	0001000	08	8
－－－－	0001001	09	9
－－－－	0001010	OA	10
－－－○	0001011	OB	11
－－－－－	0001100	0 C	12
－－－－	0001101	OD	13
－－○○○	0001110	OE	14
－－－ 0000	0001111	OF	15
－－－－－	0010000	10	16

㐱Key word
What are binary and hexadecimal numbers？

 Meanwhie，hexadecimal numbers are numbers in which the

 compatile with each other，sot the are used extensively in the computer

How to read binary and hexadecimal numbers

How to convert binary numbers to decimal number
The central processing unit CCPU），the heart of the Micro Computer，is divided

\qquad $\begin{array}{ll}5 & 4 \\ 2^{\prime} & 4 \\ 2^{\prime}\end{array}$

How the GMC-4 Works
The central processing unit (CPU), the heart of the Micro Computer, is divided into a number of different region register, etc. will be used throughout this supplement
manual, so try to memorize their meanings here.

4
How to Write, Check, and Revise Data
Try writing some data to the GMC-4. The data is written to an address.
An address is handled in units of "block number X, j just 1 like a postal address.

Writing data >>
Data can be written to addresses from block number 00 to block number $5 F$. Hexadecimal numbers are inserted into the addresses in order, starting from block
number 00 . Here, as an example, try writing " 1 " to block number 00 to block number 00. Here, as an example, try writing "1A" to block number 00 to block
number 02 . "Commands" are assigned to each piece of this data and those number 02. "Commands" are assigned to each piece of this cata, and shose
commands are executed on each piece of the data in order of address. For a list of commands, please see page 56 .

First, press the hardware reset key to clear all data
Once cleared, all data will be

Key to press	Binary LED (address)	Numeric LeD	
$(\bullet=O F F / \mathrm{O}=$ ON $)$			
Press the $\begin{gathered}\text { 区SED } k e y ~ \\ \downarrow\end{gathered}$	$\bigcirc \bigcirc \bigcirc 0$	F	displays the content. Pressing RESET will make the address 00. In this case, it means that "da of F has been inserted into block number 00. ."
Press the 1 key	00000	1	The number is displayed on the numeric LED display, and the data overwritten. However, the written data is still in a conditional approv state. Next, press the IICR key to designate the data.
\downarrow			
Press the MCP key \downarrow	\bigcirc	F	The number 1 has been written to memory block number 00 . One wis be added to the address automatically, and content of \boldsymbol{F}, which had been inserted into block number 01 , will be displayed on the numeric LED display.
Press the ${ }_{\text {chey }}$	$\bigcirc 0000$	A	The letter \boldsymbol{A} is displayed on the numeric LED display. Press the key to designate the data.
\downarrow			
Press the MCR key	$\bigcirc \bigcirc 00$	F	Data input is now completed. Content of \boldsymbol{Q}, which was inserted into

order of $3,8, D$ and C ．Check the content of the data as described．The reason why axsy is to be pressed at the beginning is to return the address to block number 00 ．

《《 Revising data＞
By pressing the astid key after entering the address block number，you
can iump to the address of the memory to be read．For example let＇s say can jump to the address of the memory to be read．For example，let＇s say keys in the order given below．

Press बesid

The content of the memory for block numer 00 is displayed on the numeric LED display
\downarrow
Press the 5 key
The number 5 is displayed on the numeric LED display．The written data is still in a conditional approval state．
\downarrow
Press the key
The number is displayed on the numeric LED display．At this point，the two－digit number，＂ 50 ，＂has actually been input，
$\underset{\text { press }}{\downarrow}$
Press the
The content of the
The content of the memory for block numer 50 is displayed on the numeric LED display
The number＂So．
binary LEDs．
Entering the new data and then pressing 世CR to designate the
data completes the revision of the data． data completes the revision of the data

《 \backslash Clearing data＞＞

Pressing the hardware reset switch turns all data into＂F＂to clear the memory．You can also clear the memory by turning the main switch on address for block number 00 without clearing the content of the memory．
Program execution types
Execution of programs can be roughly divided into two modes of RUN and STEP．Along with the display of binary numbers and the presence o absence of a key input sound，there are four types
in total． in total．

Key input	Mode	Address display on binary LEDs	Key input sound
REET 1 RUM	RUN mode	No	No
REEEI 2 R RUM	RUN mode	Yes	No
REET 51 RUM	$\begin{aligned} & \text { STEP } \\ & \text { mode } \end{aligned}$	No	No
REEET 6 RUM	$\begin{aligned} & \text { STEP } \\ & \text { mode } \end{aligned}$	Yes	Yes

The＂RUN mode＂is a mode for executing programs normally Programs that have been written can all be executed at once，from block number 00 to the end．
The＂STEP mode＂is a mode for executing commands one by one and is used mainly for checking program operations．Command and sused ma iny for checking program orearations．Comm

Trying Out Sample Programs

The GMC－4 comes with seven different types of sample programs written to it．You

解 any programs yourself．

Sample program 1：Electronic organ
Sample program 2：Guess the Music Notes game
Sample program 3：Hit the Mole game
Sample program 4：Tennis game
Sample program 5：Timer
Sample program 6：Automatic musical performance
Sample program 7：Automatic transmission of telegrams in Morse code

```
                                    (MOrse code for telegrams is introduced on the GAKKEN website: http://%tonanokagaku.
```


sample progam 1 Electronic organ

Try making some electronic sounds．
（1）Starting the program

（2）Performing with music
Pressing the to keys will produce a sound．
Each key is assigned to a different note on the musical scale．
The sound will be made only while the key is being pressed．

［

Sample
 Guess the Music Notaes
 \section*{game}

This is a game where you have to guess what note the GMG－4 is
outputting．Try testing the limits of your sense of pitch and memory skills．

1）Starting the game

Turn the main switch on，and press the © Cisi，，and Ruls keys in the order given．Inputting keys starts the game．

2）How to play the game

A melody will play from the speaker．Once the melody has stopped，try to push the to keys in the same order of notes．The melody always starts from＂C．＂So you should always press the（B）（C）key first．If you press the keys in the right order，the number of notes in the melody
will increase by one at a time，and the game will continue．If you make a will increase by one at a time，and the game will continue．If you make a score will be displayed on the numeric LED display．
Iyou get all ten notes right，it will be displayed as such on the numeric ED display
After you finish the game，press th

Sample program 3
 Hit the Mole game

This is a Hit the Mole game that uses the binary LED display．Try to bea the game with how sharp your reflexes are．

）Starting the game

After turning the main switch on，press the RESE ，C，and RIIT keys． Next，choose the speed at which the moles will appear using the following keys．This determines the difficulty level for the game．
）How to play the game
One of the binary LEDs will light up，so press one of the to keys match the lit LD．For example in following case

〔6】【5】【4】【3】【2】【1】โ0】 （Look at the numbers wirten above the LEDS（ - OFF／O＝ON）

Pressing the key is the correct answer．
If you press the right key，ashort beep sound will go off，and your score will increase by one．If you press the wrong key，or if you fail to press the right key within the allocated amount of time，your answer will be counted as wrong．
3）Ending and restarting the game
Once a total of ten moles have appeared，the game will end．Your final Once a total of ten moles have appeared，the game will end．Your final
score will be displayed on the numeric LED display．If you get a score of 10 ，it will be displayed as such．
ressing the kur key will allow you to restart the game．

${\underset{c}{\text { Sample }} \text { progam }}_{\substack{ \\\text { pan }}}$ Tennis game

his is a tennis game that can be played by two people．

1）Starting the game

 order given．Pressing the keys starts the game．

2）How to play the game
The binary LEDs are set up to look like a tennis court．

Press the and 3 keys to hit the ball．The key is for the player on the left side of the court，and the 3 key is for the player on the right side of the court．
The speed of the ball being hit back will change depending on the timing at which the keys are pressed

3）Ending the game
If the score of either player reaches seven points，the game will end and the final scores will be displayed on the binary LEDs．For example， in the following case．

[^0]
Sample program 5
 Timer

This timer can be used to set a time limit up to 7 minutes and 59 seconds maximum．When the time remaining on the timer goes down to $0, a$ sound will be emitted from the speaker

1）Setting the timer

Write the time for the timer in block number 00 to block number 02 in the program memory．

Address	of data
00	Minutes（0 to 7 ）
01	Seconds tens digit（0 to 5 ）
02	，ones sigit（ 0 t o 9 ）

Key to press RESET	For example，if you want to set the timer to 3 minutes and
3 MCR	the order given on the left．
（2）MCR	
5 HCR	

Lastly，press שisin ，EE，and RuTs in the order given to start the timer．

2）Counting down on the timer
A short beep sound will be emitted from the speaker every second A short beep sound will be emit
while the timer is in operation．
The time remaining on the tim

For example，a display like the one shown below indicates＂3 minutes and 25 seconds．

3）Ending the timer
When the time remaining on the timer goes to zero，a sound will be emitted，and the timer will stop．

This program is for performing music automatically．You can input performance data to let it play your favorite melodies．
）Inputting performance data
Turn the main switch on，and write performance data to the program memory．You can store performance data in blocks from block number 00 to block number 5 F．
Set the tempo of the song to the first memory block，block number 00 ． You can input up to 46 musical notes into the performance data． The data for lengths of notes and rests is as shown on the right．

Musical note code

Length of notes and rests	Data
Sixteenth note，sixteenth rest	0
Eighth note，eighth rest	1
Dotted eighth note	2
Quarter note，quarter rest	3
Dotted quarter note	5
Half note，half rest	7
Dotted half note	B
Whole note，whole rest	F

For example，inputting part of the song＂Sakura Sakura＂into the
performance data yields the following．

To input data for＂Sakura Sakura＂into the memory，press each of the keys one by one in the order given below．

Key to press	Binary LEDs －$=\mathrm{OFF} / \mathrm{O}=\mathrm{ON}$	Numeric LED display
REST	－000000	？
A	－000000	日
WCR	－000000	？
8	－000000	日
HCR	－000000	？
3	－000000	ق
HECR	－000000	？
8	－000000	G
HECR	－000000	？
（3）	－000000	回
WCR	－000000	？
9	－000000	G
WCR	－000000	？
$[$	－000000	7
HECR	－000000	？
F	－000000	F
HCR	－000000	？
0	－000000	\square
WCR	－000000	？

2）Checking the data
Check the written data．You can check the data that you entered by
pressing RESE ，ICCR ，IHCR ，IICR
3）Starting the performance
Press RESET ，A ，and RUIS
start the performance．

4）Revising the data

If the wrong data has been input，you can revise only the address with the wrong data，without having to go back to the beginning to write new data．
For example，an 8 has been written to address 03 ．（The correct data should be a 3）
©REE
Address block number for wrong data
8 Press the button to overwrite．This
completes the revision of the data．

5）Stopping and restarting the performance Pressing the RESTI key stops the performance．Press \boldsymbol{A} and RUW when you want to restart the performance．

6）Changing the tempo
The tempo for the song is set in the very first memory block，block The tempo for the song is set in the very first memory block，block number 00 ．As the value increases from 0 to F ，the tempo will get
Press the
7）Playing a song you like
First，change the notes and rests for the music you want to play int
performance data and then input data as described below．

7
 Command Codes and Program Structure
 In order to operate the computer，you will need to

 use＂Commands．＂You can make programscommands are assigned by the CPU in advance．

《 \backslash Writing data 》
The GMC－4 comes with a total of 30 different types of commands．The types of commands include ones for＂calculating，＂＂turning LEDs on，＂ ＂jumping，＂etc．These commands are combined in complex ways to create programs．For details on the commands，please check the＂List of
Command Codes＂on the following page． Command Codes＂on the following page．
that people can understand．＂＂Command codes＂are translations of these command symbols＂into language that a CPU can understand．＂
Hexadecimal forms are used for the command codess for example，
translating the command symbol＂TA 1 ＂would yield a command code translating the command symbol＂TIA 1 ＂would yield a command code of ＂ 81 ＂in block number 2 of the memory．The amount of memory th
command code requires depends on the type of command．
\triangle Program structure \gg
You can create a program merely by combining the three types of structures of＂sequential processing，＂＂branch processing，＂and＂repetitive processing．＂
＂flowchart＂is a diagram that shows the flow of processese in a systen

\＄PROGRAM

Program that allows you to everience what commands are Numeric LED display lighting experiment uthe TIA and AO commands
This is one of the most basic examples of a program．In ord to ererly display the number 5 onp the of numerogram．It Hisplay
we will use two commands：＂TIA＂and AO．＂

Addess	$\underbrace{}_{\substack{\text { command } \\ \text { symois }}}$	${ }_{\substack{\text { command } \\ \text { code }}}^{\text {col }}$	Command operations
00	TIA	8	Inputs the number 5 into register A
01	858	5	
02	AO	1	Outputs the content of register A to a port and turns the numeric LED display on

After you＇ve written the program，execute it by pressing
RESEET．and．The number is displayed on the numeric LED REEET，
display．
If If you change the number input to address 00 ，the number displayed on the numeric LED display will change．

Sequential processing

Proces 51 ，Process 5 ，and processs 3
are executed in sequential order．

齐Key word

Command	Command symbol	Operation	$\begin{aligned} & \text { Execution } \\ & \text { flag } \end{aligned}$	Description
0	KA	$\mathrm{k} \rightarrow \mathrm{Ar}$	0，1	Substitutes the number of the pressed numeric key（ 0 to F ）into register A ． The execution flag is 1 when no key is pressed and 0 if a key is pressed．
1	Ао	Ar \rightarrow Op	1	Lights up LEDS for the value in register A（0 o F ）on the numeric LED display．
2	с		1	Switches the values in register A and register B around with each other and also switches the values in register Y and register Z around with each other．
3	Cr	Ars Yr_{r}	1	Switches the values in register A and register Y around with each other．
4	AM	Ar \rightarrow M	1	Substitues the value in register A into the data memory．
5	MA	$\mathrm{M} \rightarrow \mathrm{Ar}$	1	Substitues the value in the data memory into register A ．
6	M＋	M＋Ar \rightarrow Ar	0，1	Adds a value to the value in the data memory of register A ． If a number is carried over to the next digit，then the execution flag is 1 ．If not，the execution flag is 0 ．
7	M－	M－Ar \rightarrow Ar	0，1	Subtracts the value in register A from the value in the data memory and substitutes the results into register A ． If the value is negative，then the execution flag is returned as 1 ．If not，then the execution flag is 0 ．
8	tia \square	$\square \rightarrow \mathrm{Ar}$	1	Substitutes a designated value（0）to F ）into register A ．
9	AIA \square	Ar $+\square \rightarrow \mathrm{Ar}$	0，1	Adds a designated value（ 0 to F ）to register A ． If a number is carried over to the next digit，then the execution flag is 1 ．If not，then the execution flag is 0 ．
A	TIY \square	$\square \rightarrow \mathrm{Yr}^{\text {r }}$	1	Substitues designated value（0 to F ）into register Y ．
в	AIY \square	$\mathrm{Yr}_{\mathrm{r}} \square \rightarrow \mathrm{yr}^{\text {r }}$	0，1	Adds a designated value（ 0 to F ）to register Y ．If a number is to be carried over to the next digit，the execution flag is 1 ． If not，the execution flag is 0 ．
c	CIA \square	Ar $\quad \square \square$ ？	0，1	If the value in register is the same as s ，then the execution flag is 0 ．If the values are not the same，the execution flag is 1 ．
D	CIY \square	$Y_{\text {¢ }} \times \square$ ？	0，1	If register Y i sequal to ，then the execution flag is 0.1 If the values are not the same，then the execution flag is 1 ．
F	JUMP $\square \square$	$\square \square \rightarrow P C$	1	If the execution flag is 1 ，then the program jumps to a specified address． If the execution flag is 0 ，then the program continues on as written．

E0	CAL Rsto	1	Turn LEDs on the numeric LED display off．
E1	CAL SEtr	1	Turns on one of the binary LEDs．Register Y＝bit number（ 0 to 6 ）of the binary LED．
E2	CAL RSTR	1	Turns off one of the binary LEDs．Register Y＝bit number（ 0 to 6 ）of the binary LED．
E4	Calcmpl	1	Inverts the value of 0 or 1 in register A （biti inversion）．
E5	Cal chng	1	Switches the values in registers $A B / \times / / 2$ and registers $A^{\prime} / B^{\prime} / Y^{\prime} / Z^{\prime}$（auxiliary registers）around with each other．
E6	$\begin{gathered} \text { CAL } \\ \text { SIIT } \end{gathered}$	0，1	Shifts the value in register A one bit to the right． If the original value is an even number，then the execution flag is 1 ．If it is an odd number，then the execution flag is 0 ．
E7	Calends	1	Produces the end sound．
E8	Calerrs	1	Produces an error sound．
E9	Cal shts	1	Produces short beep sound．
EA	Cal lons	1	Produces a long beep sound．
ев	Calsund	1	Produces the sound of a note（1 to E）designated by register A ．
EC	CALTIMR	1	Waits for processing only for a length of time designated by register A ．The length of the wait time is \｛（Value in register $\mathrm{A}+1$ ） $\times 0.15$ s．
ED	CAL DSPR	1	Lights up the binary LED of the value in the data memory． Stores the data for the top three bits in block number 5 F and for the bottom four bits in block number 5 E ．
EE	CAL Dem－	1	Subtracts the value in register A from the value in the data memory． Stores the results of the calculation in the memory after it has been converted to decimal number．After execution， 1 is subtracted from the value in register Y ．
EF	CAL DEM＋	1	Adds the value in register A from the value in the data memory．Stores the results of the calculation in the memory after it has been converted to decimal number When a number is carried over to the next digit，the result is written to the data memory automatically．After execution， is subtracted from the value in register Y ．

\triangle CAUTION Commands such as CAL RSTO，CAL SUND，etc．are called
Subroutiteses are eprrts grouped together to make complex commands easier to us
There are 16 different types of subroutines，and the command symbols for 1116 here are 16 diff erent types of subroutines，and the command symbols for all 16

Program	Binary Leds ($-=$ OFF/* $=$ ON)		
Binary LEDS	Address	Command	Command
-------	00	TIY	A
-----**	01	1	1
----**	02	TIA	8
----***	03	9	9
----*--	04	CAL	E
---***	05	timr	c
---***	06	CY	3
----***	07	Aо	1
---*---	08	CY	3
---*-.**	09	CAL	E
---*-*-	OA	SHTS	9
---***	OB	AIY	B
---**--	oc	1	1
---****	OD	JUMP	F
---***-	OE	1	1
-..****	OF	3	3
--*----	10	JUMP	F
--*---*	11	0	0
--*--*-	12	2	2
--*-***	13	CAL	E
--**--	14	ENDS	7
--*-***	15	JuMP	F
--*-**-	16	1	1
--*-***	17	5	5

program	Binary light show using bit shift operations		
Binary LEDS	Address	Command symbols	Command code
-------	00	CAL	E
-----**	01	DSPR	D
----**	02	TIA	8
----***	03	0	0
----*--	04	CAL	E
---*************)	05	timr	c
----**-	06	TIY	A
---****	07	F	F
---*---	08	ma	5
-..****	09	CAL	E
---*-*-	OA	SIFT	6
---*-**	OB	JuMP	F
---**--	oc	1	1
---****	OD	A	A
$\ldots{ }^{-\cdots * *}$	OE	AM	4
$\ldots * * * *$	OF	TIY	A
--*----	10	E	E
--*---**	11	MA	5
--*-**-	12	CAL	E
--*-***	13	SIFT	6
--***--	14	AIA	9
--****	15	8	8
--*-**-	16	AM	
--*-***	17	JuMP	F
--**---	18	2	2
--**--*	19	1	1
--***-	1A	AM	4
--****	1B	TIY	A
--***--	1 C	F	E
--*****	1 D	MA	5
--****-	1 E	CAL	E
$\cdots * * * * *$	1 F	SIFT	6
-*-----	20	AM	4
-*---**	21	KA	0
-*---*-	22	Jump	F
-*--***	23	0	0
-*--*--	24	0	0
-*--***	25	TIY	A
-*--**-	26	F	F
-*--***	27	MA	5
-*-*---	28	AIA	9
-***-**	29	8	8
-*-*-*-	2 A	AM	4
-*****	2 B	Jump	F
-***--	2 C	0	0
-******	2 D	0	0

program	7	Random nu generator	
Binary LEDs	Address	Command symbols	$\begin{gathered} \text { Command } \\ \text { code } \end{gathered}$
-------	00	AIY	B
-----************)	01	1	1
-...-**	02	M+	6
--.--**	03	AM	4
-..-**	04	CAL	E
----*************)	05	SUND	B
--.-**-	06	JUMP	F
--.-***	07	0	0
---*.-.	08	0	0

program	5	Analog lighting with the numeric LED display (PWM controls)									
Binay LEOS	Addess	$\left\lvert\, \begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { smols } \end{array}\right.$	$\underset{\substack{\text { mamax } \\ \text { made }}}{ }$	Binay LEOs	Addes	$\left\lvert\, \begin{gathered} \text { Command } \\ \text { smmols } \end{gathered}\right.$		Binay Leds	Addes	$\underset{\substack{\text { Command } \\ \text { Smmols }}}{ }$	${ }_{\text {comad }}^{\substack{\text { cuede }}}$
--.-	00	TY	A	--**-**	19	1	1	*--*-**	49	cal	E
-....-*************)	01	1	1	--*****	1 A	6	6	*--*************)	4A	CMPL	4
-...-**	02	TIA	8	--****************)	1 B	TIY	A	*--*************)	4 B	am	4
--.--**	03	0	0	--***--	1 C	2	2	*-***	4 C	JuMp	F
-...*--	04	AM	4	--*****	1D	TIA	8	*-***************)	4D	0	0
-...**************)	05	TIY	A	--****-	1 E	1	1	*-.***	4E	5	5
--.-***	06	0	0	-.*****	1 F	M+	6				
--.-***	07	CAL	E	-*-...-	20	JuMP	F				
-..**-	08	Rsto	0	-*-...**	21	2	2				
-..*--*	09	MA	5	-*-..**	22	7	7				
-..****	OA	AIA	9	-*-.-**	23	AM	4				
-..****	ов	2	2	-*-***	24	JuMp	F				
--.***	0 C	JuMp	F	-*--***	25	0	0				
-..****	OD	1	1	-*--***	26	5	5				
-..****	OE	2	2	-*-***	27	AM	4				
...****	OF	JUMP	F	-***..-	28	TIY	A				
--**-	10	0	0	-***-**	29	1	1				
--*---**	11	A	A	-*****	2 A	ma	5				
--*-***	12	TIA	8	-*****	2 B	TIY	A				
--***************)	13	0	0	-****-	2 C	0	0				
--***--	14	Aо	1	-*****	2 D	CIA	c				
--*****	15	ma	5	-****-	2 E	0	0				
--****	16	AIA	9	-*****	2 F	Jump	F				
$--* * * * * * * * ~$		E	E	-**--.	30	3	3				
				-**-..*	31	c	c				
				-**-**	32	TIA	8				
				-**..**	33	2	2				
				-**-**	34	M+	6				
				-**-***	35	JuMP	F				
				-*****	36	4	4				
				-*****	37	6	6				
				-***-.-	38	AM	4				
				-*****	39	JuMp	F				
				-*****	3A	0	0				
				-*****	3 B	5	5				
				-****-	3 C	TIA	8				
				-*****	3 D	2	2				
				-*****	3 E	M-	7				
				-*****	$3 F$	JuMp	F				
				*--...-	40	4	4				
				-...-	41	6	6				
				-..--	42	AM	4				
				*-..-**	43	JuMp	F				
				*-..**	44	0	0				
				*-..***	45	5	5				
				*-..***	46	TY	A				
				*...***	47	1	1				
				*-.**-	48	MA	5				

Gunfighting game

Game results obtained by looking at lit LEDs (tentative name)

 $$
\text { When the person on side } \mathbb{T} \text { wins: }
$$
 $$
\text { When the person on side } 4 \text { has a false start: }
$$
 When the person on side has a false start:

Binary LEDS	Addess	Command symbols	Come
\ldots	00	TIA	8
-...-*************)	01	F	F
-..-**	02	CAL	E
-...-************)	03	TMM	c
-...*-	04	сн	2
--..***	05	KA	0
-...**-	06	JuMP	F
--..***	07	0	0
-..*-..	08	c	c
..-***	09	JuMP	F
-..***	OA	3	3
-..****	OB	6	6
.-.***	oc	TIA	8
-..****	OD	3	3
-..****	OE	CAL	E
…***	OF	TIMR	c
--*-...	10	CH	2

[^0]: ourt．＂ court，

